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Hamiltonians the traditional approach to integrability

A 2N dimensional Hamiltonian system is Liouville integrable
if it possesses N independent conservedquantities Hj in
Poisson involution that is

Hi Hj 0

One of the H can be taken as the Hamiltonian of interest H

This gives us the notion of an integrable hierarchy each He can
be used define a dynamical system each with respect to a

time variable tk



Hamiltonians the traditional approach to integrability

We have a hierarchy of commuting Hamiltonian flows

This implies path independence in the multi time t tn space

Think not of a single integrablesystem
messageÉ Takeaway

but of the entire hierarchy it lives in



But howwould one capture integrable hierarchies
in the Lagrangian formalism



Lagrangian multiforms a variational criterion for integrability

A variational criterion for integrability was introduced
in Lobb Nijhoff 09 in a discrete setup

What we need is a collection of Lagrangians L associated with
times te assembled into a 1 form centralobjects in the

Lagrangianmultiform theory
L q ElLe q dte for finite dimensional

integrable systems

Here q denotesgeneric configuration coordinates By L q andLu q
we mean that these quantities depend on q and a finite numberof
derivatives of q with respects to the times ti tn



Lagrangian multiforms a variational criterion for integrability

We now have an associated generalised action
this replaces the
traditionalaction

S q I L q t seq JL g at

where I is a curve in the multi time IR with coordinates tin tn

Applying the generalised variational principle to Lgives the
multi time Euler Lagrangeequations

21k Jen2L
standardEuler Lagrange

age
O Nt equation for eachLk2g

Lagrangian coefficient L
cannotdepend on velocities

22k 0 t
qt for lekNew corner Ogee

Euler Lagrange
equations conjugate momentum to q3ft k.at n

is the same with respect

wt to all times th



Lagrangian multiforms a variational criterion for integrability

On the solutions of the multi time Euler Lagrangeequations we require

seq r S q i

for all curves r r in the multi time space

This implies the closure relation
equivalent to the

dL q O It Lj JtLk 0 No Poisson involutivity
of Hamiltonians

on shell



Lagrangian multiforms a variational criterion for integrability

These ideas have been extended and illustrated invariousother setups

continuous finite dimensional systems
Suris 13 Petrera Suris 21

fieldtheories in it I dimensions
Saris Vermeeren 10 Sleigh NijhoffCaudvelier 19 20
Caudrelier Stoppato 20921 PetrovaVermeeren 21
Caudvelier Stoppato Vicedo 22

field theories in 2 1 dimensions

Sleigh Nijhoff Caudreliev 21 Nijhoff 23

semi discretesystems
Sleigh Vermeeven 22



Is there an efficient way of describing
all the Lagrangian coefficients in one formula



11 Lie dialgebras and Lax equations



Lie dialgebras
Semenov Tian Shansky 83

Let be a Lie algebra with a Lie bracket and R be
a linear map It R is a solution of the modified classical Yang Baxter

equation

R X RCY R REX Y X RCY X Y X Y

then the skew symmetric bracket

x Y Rix Y x RLY

satisfies the Jacobi identity and defines a second Lie algebra
structure on We will denote the corresponding Lie algebra by r

The pair r is called a Lie dialgebra
ᵈ not the same
as a Lie bialgebra



Lie dialgebras

We now have another set of adjoint and coadjoint actions For
X Y we can define

ad Y X Y R and lad G Y G ad Y X Y r

Wealsohave the following usefulrelationtiidjointaction
adjoinitaction

Rt R d
of fron

of r on

where R REID

Let Im R and R X for One can show that
for any element c we have a unique decomposition as

Rt X R X X



Lie dialgebras

Let us denote by Gr the Liegroup associated with the Lie algebra
r The homomorphisms R give rise to Liegroup homomorphisms
which allow us to define the multiplication r in Gr as

g rh gt g r hah 9th g h g h Gr

where g h denotes the product in G

We have a new set of adjoint and coadjoint actions those of
Gr on and which we can denote in the following useful way

Ad Adg Adg X_ and

Adf RI Adg 9 RI Adg XE r
E g eGr



Lie Poisson bracket and coadjoint orbits

Using the serond Lie bracket on we can define an additional
Lie Poisson bracket on for f g E C and GE

f g r 9 Pf G Pg G
the original Lie Poisson

bracket on reads
naturalpairingbitween f g G Df G Pg Gand IX

Its symplectic leaves are the coadjoint orbits ofGr in

We need one final ingredient an Ad invariantnondegenerate
symmetric bilinear form on

C i
the adjoint actions



Quirkaside Lax pairs

A Lax pair 2 M consists of two matrices functions on
the phasespaceof the system such that the equations
of motion of the system can be written as

infiritation
on

then

M is
ᵈ
a function
of L

Spectral invariants of L are integrals of motion



Involutivity theorem and Lax equations

The Ad invariant functions on y't are in involution with respect
to Theequation of motion

2,4simplyCasimir functionsh L H

induced by an Ad invariant function H on takes the

following equivalentforms for an arbitrary LE g't

L adthey L I adheres
h ad Ionic til using

n wouldhave

given trivial
equations



Involutivity theorem and Lax equations

The Ad invariantnondegenerate symmetric bilinear form
on allows us to rewrite the lastequation in the form of
a Lax equation

L R PH L L

So the natural arena to define our

phase space is a coadjoint orbit of Gr
in EFFE Takeaway

messageE
On Ad A 4 EGR A E

is where the
Lax matrix L lives



Special case the Adler Kostant Symesscheme
Adler 78 Symes 78 Kostant 79

Onegets the well knownAdler Kostant Symes scheme by fixing A
to be in SI

This choice results in only the subgroup G in Gr Gtx G playing
a role since

L AdF A RI Ad A

Thus the coadjoint orbit Oa lies in Sgt



On to themulti time story now



Compatible time flows

For any two Ad invariant functions H and 42 on we have

Hi He r 0

This means that if we have a suffilient number of such independent
functions we can define compatible time flows associated with a
family of Ad invariant functions Hk k 1 N

We then obtain an integrable hierarchy with equations in Lax form

2hL REPH CL L K l N



111 Constructing Lagrangian multiforms on coadjoint orbits



The general Lagrangian multiform
Caudvelier Dell'Atti Singh 23

We introduce the Lagrangian 1 form

LEE Le dt 816 Je a

with kineticpart

K 9 L 2,4 RU dtic L Ad A CEGR

and potential part fixed non
dfami.ca

elementofg
defining the phasespaceOn

N

H 9 HK L dtic field tintaining the
dynamicaldegrees of
freedom of the system

it c c4



Euler Lagrangeequations Lax equations Result I
Caudvelier DellAtti Singh 23

On considering the variation of the Lagrangian I form L
we can derive the Euler Lagrangeequations which take the form

deal I adtrrn.co L k l N

Then on identifyingg'twith 8 and ad with ad we get

It L RI DALL L K l N

which is exactly the Laxequationassociatedwith the Laxmatrix L



Closure relation Result11
Caudvelier DellAtti Singh 23

Next we establish the closure relation for the Lagrangian I form
L that is

d L O on shell

or equivalently

Jt Lk Jt Lj 0 on shell

This is a consequence of the Adt invariance of H and the fact
that R is a solution of the modified CYBE



Closure relation and Poisson involutivity Result111
Caudvelier DellAtti Singh 23

Further for the Lagrangian l forms in this class we can prove

21k on shell
ate Yet Hi He 0

for Lagrangian l forms and the involutivity of Hamiltonian
d h

g

This is in fact a corollary of a deeper structural result
proved in Caudvelier DellAtti Singh 23 at

in Saris 13



IT



Gaudin models

Gaudin models are a general class of integrable systems
Lie algebras with aassociated with quadraticliealge.ba
enondegenerate invariant
bilinearform

First introduced in the quantum finite dimensional setup
to describe quantum spin chains
Gaudin 76

Variousgeneralisations are known corresponding to both finite and
infinite dimensional algebras and with rational elliptic
skewsymmetric and non skew symmetric r matrices

A large class of non ultralocal integrablefield theories have been shown
to be reinterpretations of classicaldihedral affine Gaudinmodels
Vicedo 17



Rational Gaudin model

The Lax matrix of a rational Gaudin model associated with
a finite Lie algebra and a set of points 5 EC r 1 n

and the point at infinity is given by

L A
1g

Xo Xi Xn Xo

e valuedrational
function in variable d

with the corresponding Lax equations

OtiXs Xr Xs
I y

Str

Oti r Eg Exr Xs
g g

Xr Xo Qi Xo 0



Rational Gaudin model

The quadratic Gaudin Hamiltonians are given as

Hr Eg Tv XrXs
y g

Tr Xr Xo r l N

1
BE

describes long range
spin spin interaction



Algebraic setup

We need to choose a suitable Lie algebra and a linearmap
from the Lie algebra to itself

Let us fix thesebecome the

Q In a cap to sites of themodel

a finite set of points in GP including thepoint at infinity
and an index set S 1 N N

Denoteby
Fo the algebra of valued rational function
in theformalvariable d with poles in Q In this iswherethe

Lax matrix lives

Define the local parameters hr N Sr Sr α and do
A



Algebraic setup

Define the direct sum of Lie algebras

the Lie algebra

FÉE
Yis the algebra of formal Laurent series in variable On with

coefficients in and Lie bracket

To
elements of are tuples
X dit Xn an Xo do

with in Xn Xo



Algebraic setup

We can define a vectorspace decomposition of a into Lie
subalgebras

as we will denoteby P
the projeitors
determined by thiswith a res

8v decomposition

where algebra offormal
I A r tray or series in Ar

dad do no algebraof formalTaylorseries
indo withoutthe constantterm

and

I die di r the algebra of polynomials in art
without theconstantterm

D8 No algebra of polynomials inD8



Algebraic setup

Further we have an embedding of Lie algebras

Fa f ca f Lant of

which indusestheveiforspasedeomposi.to
mapsfeF 8 to the

as tuple of its Laurent
expansion at points
51g In

Eat 7Q

We will denote by The the projectors corresponding to this decomposition
not the
same as P

The r matrix we need is
we will use it to equip

R Tt Tt
with a dialgebrastructure



Algebraic setup

To identify the dual space to we will use the
nondegenerate invariantsymmetric bilinear form on

X Y Tr XY

to define a nondegenerate invariantsymmetric bilinear form on 8

x Y Tr Xr Av Yu Ar

which induces the decomposition

It 5 Fat Jat



Algebraic setup

Both and Ya18 are maximally isotropic to this bilinear form
which allows us to make the identification

a if c Facs
need to workwith

So coadjoint orbits of fat in will be the phase space
where the Lax matrix of model lives and where we will
describe its dynamics

At
elements of Gat are of the form

6 4 A Unt An Uat do
with art Carl 0 ar

and Uat Hr 1 08 d



Algebraic setup

The roadjoint orbit of an element f is given by

F Ad f I since we are
looking at an

RI Ad f element from

R Ut Laf 4
1 a subspace of

the dual onlyTI Qt c f QI one corresponding

subgroup plays a
where we have made the identification R F role in the

coadjoint orbit

So we are now ready with our setup



Lax matrix

Choose
A d R Ar R

and consider its embedding into

A D É 1g 8 8

The orbit of A under the coadjoint action of Gat will be

L TI 9 41.670 contains the
dynamical degrees

fixed non dynamicalArdia If.LI



Lagrangian multiform for the rational Gaudin model
Caudvelier Dell'Atti Singh 23

We can now write down the Gaudin multiform on the orbit of A X

with the elements L L

L ETFs Lindti
restriction of

with
4µs

to cal

Lk r Es Tr Lds It Ust As Us ds He r Cal

Upon simplification the Lagrangian coefficients take the form

Liar Tr As 052 He r GL

0 for notationalsimplility



Lagrangian multiform for the rational Gaudin model
Caudvelier Dell'Atti Singh 23

The potential part Hyr GL is the restriction to cal of
invariant functions on that can be given by

Her I Tr X ar k 31

Ktl

For 1 1,2 we have

Him L Er Tr ArasSr Ss
Arr

and

Ha CGL Tr Ar Eu
g

2 Ar Er
p



Euler Lagrange equations

Varying Li and 2 with respect to 0s 5 1 N

gives the Euler Lagrangeequations for the first and the
second time flows respectively

OtiAs Ar As
I y

Str

Oti Ar Eg Ar As
To y

Ar R



Ongoing work and future directions



Ongoing work and future directions

I Lagrangian multiform for cyclotomic Gaudin models
work in progresswith V Caudrelierand B Vicedo

Decomposition of a suitable Liealgebra into subalgebras
that are not isotropic with respect to the chosen
bilinear form gives a non skewsymmetric r matrix

Ausing the full powerof
the Lie dialgebraframework

Realisation of cyclotomic Gaudin models as some interesting
finite dimensional integrable models



Ongoing work and future directions

I Lagrangian multiform for affine Gaudin models

reinterpretation asWAnon ultralocal integrable
fieldtheories

path integral quantisation a
of integrable field theories

III Connections to geometricactions

Connections of the Liedialgebra construction
with the gauge theoretic approach to integrability
in particular mixedBFtheory based construction of
Gaudin models
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