Lagrangian multiforms on coadjoint orbits
Anup Anand Singh
University of Leeds

Based on
Lett. Math. Phys. 114,34 (2024)

$$
\text { ar Xiv: } 2307.07339
$$

Vincent Caudrelier, Marta Dell'Atti, AAS

Students in Theoretical and Mathematical Physics Edinburgh, March 07, ${ }^{2} 4$

Outline

I Lagrangian multiform for finite-dimensional integrable systems

The what and the why

II Lie dialgebras and Lax equations $\}$ Algebraic background
III Constructing Lagrangian multiforms on coadjoint orbits $\}$ New results IV Lagrangian multiform for the rational Gaudin model V Ongoing work and future directions \} Connections, generalisations

I Lagrangian multiforms for finite-dimensional integrable systems
\# Hamiltonian: the traditional approach to integrability
A $2 N$-dimensional Hamiltonian system is (Liouville) integrable if it possesses N independent conserved quantities H_{j} in Poisson involution, that is,

$$
\left\{H_{i}, H_{j}\right\}=0 .
$$

One of the H_{i} can be taken as the Hamiltonian of interest H.

This gives us the notion of an integrable hierarchy: each H_{k} can be used define a dynamical system each with respect to a "time" variable t_{k}.
\# Hamiltonian : the traditional approach to integrability
We have a hierarchy of commuting Hamiltonian flows:

$$
\underbrace{\left\{U_{j}, H_{k}\right\}=0}_{\substack{\text { Poisson involutivity } \\
\text { of Hamiltonians }}} \Rightarrow \underbrace{\left[\frac{\partial}{\partial t_{j}}, \frac{\partial}{\partial t_{k}}\right]}_{\begin{array}{c}
\text { commutativity of } \\
\text { vector fields }
\end{array}}=0
$$

This implies path-independence in the multi-time $\left(t_{1}, \ldots, t_{N}\right)$ space.

Think not of a single integrable system, but of the entire hierarchy it lives in.

Takeaway message

But how would one capture integrable hierarchies in the Lagrangian formalism?
\# Lagrangian multiforms: a variational criterion for integrability
A variational criterion for integrability was introduced in [Lobb-Nijhoff ${ }^{9}$ 09] in a discrete setup.

What we need is a collection of Lagrangians \mathcal{L}_{k} associated with times t_{k} assembled into a 1 -form

$$
\mathcal{L}[q]=\sum_{k=1}^{N} \mathcal{L}_{k}[q] d t_{k}
$$ integrable systems

Here q denotes generic configuration coordinates. By $\mathcal{L}[q]$ and $\mathcal{L}_{k}[q]$, we mean that these quantities depend on q and a finite number of derivatives of q with respects t_{0} the times t_{1}, \ldots, t_{N}.
\# Lagrangian multiforms: a variational criterion for integrability
We now have an associated generalised action

$$
S[q, \Gamma]=\int_{r} \mathcal{L}[q]
$$

this replaces the traditional action

$$
s[q]=\int_{a}^{b} L[q] d t
$$

where T is a curve in the multi-time \mathbb{R}^{N} with coordinates t_{1}, \ldots, t_{N}. Applying the generalised variational principle to \mathcal{L} gives the multi-time Euler -Lagrange equations

$$
\begin{aligned}
& \frac{\partial \mathcal{L}_{k}}{\partial q}-\partial_{t_{k}} \frac{\partial \mathcal{L}_{k}}{\partial q_{t_{k}}}=0, \backsim \text { standard Euler-Lagrange } \\
& \underset{\substack{\text { Euler-Lagrange } \\
\text { equations }}}{\text { New (toner) }}\left\{\begin{array}{l}
\frac{\partial \mathcal{L}_{k}}{\partial q_{t_{l}}}=0, \quad l \neq k, \\
\frac{\partial \mathcal{L}_{k}}{\partial q_{t_{k}}}=\frac{\partial \mathcal{L}_{\ell}}{\partial q_{t_{l}}}, k, l=1, \ldots, N .
\end{array}\right. \\
& \text { Lagrangian coefficient } \mathcal{L}_{k} \\
& \text { cannot depend on velocities } \\
& \text { qt for } l \neq k \\
& \text { conjugate momentum to } q \\
& \text { is the same with respect } \\
& \text { to all times } t_{k}
\end{aligned}
$$

\# Lagrangian multiforms: a variational criterion for integrability
On the solutions of the multi-time Euler-Lagrange equations, we require

$$
S[q, \Gamma]=S\left[q, \Gamma^{\prime}\right]
$$

for all curves r^{\prime}, r^{\prime} in the multi-time space.
This implies the closure relation

$$
d \mathcal{L}[q]=0 \Leftrightarrow \partial_{t_{k}} \mathcal{L}_{j}-\partial_{t_{j}} \mathcal{L}_{k}=0
$$ of Hamiltonians

on shell.
\# Lagrangian multiforms: a variational criterion for integrability
These ideas have been extended and illustrated in various other setups:
continuous finite-dimensional systems
[Suris ${ }^{\text {13 }}$] [Petrera-Suris ${ }^{9}$ 21]
field theories in $1+1$ dimensions
[Suris - Vermeeren ${ }^{9} 16$] [Sleigh-Nijhoff-Caudvelier ${ }^{9} 19{ }^{9} 20$]
[Caudrelier-Stoppato '20'21] [Petrera-Vermeeren '21]
[Caudrelier-Stoppato - Vicedo '22]
field theories in $2+1$ dimensions
[Sleigh-Nijhoff-Candrelier '21] [Nijhoff '23]
semi-discrete systems
[Sleigh-Vermeeren '22]

Is there an efficient way of describing all the Lagrangian coefficients in one formula?

II Lie dialgebras and Lax equations
\# Lie dialgebras
[Semenov-Tian-Shansky '83]
Let δ be a Lie algebra with a Lie bracket $[$,$] , and R: \S \rightarrow \delta$ be a linear map. If R is a solution of the modified classical Yang-Baxter equation

$$
[R(X), R(Y)]-R([R(X), Y]+[X, R(Y)])=-[X, Y], \forall X, Y \in \xi
$$

then the skew-symmetric bracket

$$
[X, Y]_{R}=\frac{1}{2}([R(X), Y]+[X, R(Y)])
$$

satisfies the Jacobi identity and defines a second Lie algebra structure on δ. We will denote the corresponding Lie algebra by δ_{R}.

The pair $\left(\delta, \delta_{R}\right)$ is called a Lie dialgebra. as a Lie bialgebra
\# Lie dialgebras
We now have another set of adjoint and coadjoint actions. For $\forall x, Y \in \delta, \forall \xi \in \xi^{*}$, we can define

$$
\operatorname{ad}_{X}^{R} \cdot Y=[X, Y]_{R} \text { and }\left(\operatorname{ad}_{X}^{R *} \cdot \xi\right) Y=-\xi\left(\operatorname{ad}_{X}^{R} \cdot Y\right)=-\xi\left([X, Y]_{R}\right) \text {. }
$$

We also have the following useful relation
adjoint action
of ε_{R} on δ
coadjoint action of δ_{R} on ξ^{*}
where $R_{ \pm}=\frac{1}{2}(R \pm I d)$.
Let $\xi_{ \pm}=\operatorname{Im} R_{ \pm}$and $X_{ \pm}=R_{ \pm}(x)$ for $x \in \xi$. One can show that for any element $X \in\{$, we have a unique decomposition as

$$
x=R_{+}(x)-R_{-}(x)=x_{+}-x_{-} .
$$

\# Lie dialgebras
Let us denote by G_{R} the Lie group associated with the Lie algebra ξ_{R}. The homomorphisms $R_{ \pm}$give rise to Lie group homomorphisms, which allow us to define the multiplication R_{R} in G_{R} as

$$
g \cdot R h=\left(g_{+}, g-\right) \cdot R\left(h_{+}, h_{-}\right)=\left(g_{+} h_{+}, g_{-} h_{-}\right), \quad \forall g, h \in G_{R},
$$

where $g_{ \pm} h_{ \pm}$denotes the product in G.
We have a new set of adjoint and coadjoint actions, those of G_{R} on δ_{R} and δ^{*}, which we can denote in the following useful way:

$$
\begin{gathered}
A d_{g}^{R} \cdot x=A d_{g_{+}} \cdot X_{+}-A d g_{-} \cdot X_{-} \text {and } \\
A d_{g}^{R *} \cdot \xi=R_{+}^{*}\left(A d g_{+} \cdot \xi\right)-R_{-}^{*}\left(A d g_{-} \cdot \xi\right), \quad \forall x \in \delta_{R}, \xi \in \xi^{*}, g \in G_{R .} .
\end{gathered}
$$

\# Lie-Poisson bracket and coadjoint orbits
Using the second Lie bracket on g, we can define an additional Lie- Poisson bracket on ξ^{*}, for $f, g \in C^{\infty}\left(\xi^{*}\right)$ and $\xi \in \xi^{*}$,

$$
\{f, g\}_{R}(\xi)=\left(\xi,[\nabla f(\xi), \nabla g(\xi)]_{R}\right)
$$

the original Lie-Poisson bracket on δ^{*} reads
natural pairing between

$$
\{f, g\}(\xi)=(\xi,[\nabla f(\xi), \nabla g(\xi)])
$$

Its symplectic leaves are the coadjoint orbits of G_{R} in \S^{*}.
We need one final ingredient: an Ad-invariant nondegenerate symmetric bilinear form \langle,$\rangle on \delta$.
\# Quick aside: Lax pairs
A Lax pair L, M consists of two matrices - functions on the phase space of the system - such that the equations of motion of the system can be written as

M is a function of L

Spectral invariants of L are integrals of motion.
\# Involutivity theorem and Lax equations
The $A d^{*}$-invariant functions on δ^{*} are in involution with respect to $\{,\}_{R}$. The equation of motion
these function are

$$
\frac{d}{d t} L=\{L, H\}_{R}
$$ with respect to $\{$,

induced by an $A d^{*}$-invariant function H on ξ^{*} takes the following equivalent forms, for an arbitrary $L \in \xi^{*}$,

$$
\begin{aligned}
& \frac{d}{d t} L=a d_{\nabla H(L)}^{R *} \cdot L=\frac{1}{2} \operatorname{ad} \\
& R \nabla H(L) \\
& *
\end{aligned} L=a d_{R \pm \nabla H(L)}^{*} \cdot L \cdot \overbrace{\text { using }}{ }^{\{n\} \text { would have }} \begin{aligned}
& \text { given trivial } \\
& \text { equations }
\end{aligned}
$$

\# Involutivity theorem and Lax equations
The Ad-invariant nondegenerate symmetric bilinear form \langle, on δ allows us to rewrite the last equation in the form of a Lax equation

$$
\frac{d}{d t} L=\left[R_{ \pm} \nabla H(L), L\right] .
$$

So, the natural arena to de fine our phase space is a coadjoint orbit of G_{R} in ε_{8}^{*},

$$
O_{\Lambda}=\left\{A d_{\varphi}^{R *} \cdot \Lambda ; \varphi \in G_{R}\right\}, \Lambda \in \S^{*} \text {. }
$$

this is where the
Lax matrix L lives
\# Special case: the Adler-Kostant-Symes scheme [Adler' 78], [Cymes '78], [Kostont' 79]

One gets the well-known Adler-Kostant-Symes scheme by fixing Λ to be in \S_{-}^{*}.

This choice results in only the subgroup G_{-}in $G_{R} \simeq G_{+} \times G_{-}$playing a role since

$$
L=A d_{\varphi}^{R^{*}} \cdot \Lambda=-R_{-}^{*}\left(\operatorname{Ad}_{\varphi-}^{*} \cdot \Lambda\right) .
$$

Thus, the coadjoint orbit O_{Λ} lies in δ_{-}^{*}.

On to the multi-time story now!
\# Compatible time flows
For any two $A d^{*}$-invariant functions H_{1} and H_{2} on ξ^{*}, we have

$$
\left\{H_{1}, H_{2}\right\}_{R}=0 .
$$

This means that if we have a sufficient number of such independent functions, we can define compatible time flows associated with a family of $A d^{*}$-invariant functions $H_{k}, k=1, \ldots, N$.

We then obtain an integrable hierarchy with equations in Lax form

$$
\partial_{t_{k}} L=\left[R_{ \pm} \nabla H_{k}(L), L\right], \quad k=1, \ldots, N
$$

III Constructing Lagrangian multiforms on coadjoint orbits
\# The general Lagrangian multiform
[Caudvelier-Dell'Atti-Singh '23]
We introduce the Lagrangian 1-form

$$
\mathcal{L}[\varphi]=\sum_{k=1}^{N} \mathcal{L}_{k} d t_{k}=\mathcal{K}[\varphi]-\mathcal{L}[\varphi]
$$

with kinetic part

$$
K[\varphi]=\sum_{k=1}^{N}\left(L, \partial_{t_{k}} \varphi \cdot R \varphi^{-1}\right) d t_{k}, \quad L=A d_{\varphi}^{R *} \cdot \underbrace{\varphi}, \quad G_{R},
$$

and potential part

$$
\mathcal{I}[\varphi]=\sum_{k=1}^{N} H_{k}(L) d t_{k} .
$$

field containing the dynamical degrees of freedom of the system
Ad ${ }^{*}$-invariant functions $H_{k} \in C^{\infty}\left(\xi^{*}\right)$
\# Euler-Lagrange equations = Lax equations |/ Result I [Caudvelier-Dell'Atti-Singh '23]

On considering the variation of the Lagrangian 1 -form \mathcal{L}, we can derive the Euler-Lagrange equations which take the form

$$
\partial_{t_{k}} L=\frac{1}{2} \operatorname{ad}_{R \nabla H_{k}(L)}^{*} \cdot L, \quad k=1, \ldots, N .
$$

Then, on identifying δ^{*} with δ, and ad ${ }^{*}$ with ad, we get

$$
\partial_{t_{k}} L=\left[R_{ \pm} \nabla H_{k}(L), L\right], \quad k=1, \ldots, N,
$$

which is exactly the Lax equation associated with the Lax matrix L.
\# Closure relation // Result II
[Caudrelier - Dell'Atti - Singh '23]
Next, we establish the closure relation for the Lagrangian 1-form \mathcal{L}, that is,

$$
d \mathcal{L}=0, \quad \text { on shell, }
$$

or equivalently,

$$
\partial_{t_{j}} \mathcal{L}_{k}-\partial_{t_{k}} \mathcal{L}_{j}=0, \quad \text { on shell. }
$$

This is a consequence of the $A d^{*}$-invariance of H and the fact that R is a solution of the modified CYBE.
\# Closure relation and Poisson involutivity /| Result III [Caudrelier - Dell'Atti - Singh '23]

Further, for the Lagrangian 1-forms in this class, we can prove

$$
\frac{\partial \mathcal{L}_{k}}{\partial t_{l}}-\frac{\partial \mathcal{L}_{l}}{\partial t_{k}}=\left\{H_{k}, H_{l}\right\}_{R}=0, \quad \text { on shell, }
$$

demonstrating the connection between the closure relation for Lagrangian 1-forms and the involutivity of Hamiltonians.

This is, in fact, a corollary of a deeper structural result proved in [Caudrelier - Dell'Atti - Singh ${ }^{23}$].

IV Lagrangian multiform for the rational Gaudin model
\# Gaudin models
Gaudin models are a general class of integrable systems associated with quadratic Lie algebras. Lie algebras with a nondegenerate invariant bilinear form
First introduced in the quantum finite-dimensional setup to describe quantum spin chains.
[Gaudin' 76]
Various generalisations are known - corresponding to both finite- and infinite-dimensional algebras; and with rational, elliptic, skew-symmetric and non-skew-symmetric r-matrices.

A large class of non-ultralocal integrable field theories have been shown to be reinterpretations of classical dihedral affine Gaudin models. [Viced '17]
\# Rational Gaudin model

The Lax matrix of a rational Gaudin model associated with a finite Lie algebra g and a set of points $S_{r} \in \mathbb{C} \quad(r=1, \ldots, N)$ and the point at infinity is given by

$$
\begin{aligned}
L(\lambda)= & \sum_{r=1}^{N} \frac{X_{r}}{\lambda-\zeta_{r}}+X_{\infty}, X_{1}, \ldots, X_{N}, X_{\infty} \in \xi, \\
& \begin{array}{c}
\text { E-valued rational } \\
\text { function in variable } \lambda
\end{array}
\end{aligned}
$$

with the corresponding Lax equations

$$
\begin{aligned}
& \partial_{t_{1}^{r}} X_{s}=\frac{\left[X_{r}, X_{s}\right]}{\rho_{r}-\varphi_{s}}, s \neq r, \\
& \partial_{t_{1}^{r}} X_{r}=-\sum_{s \neq r} \frac{\left[X_{r}, X_{s}\right]}{\rho_{r}-\rho_{s}}-\left[X_{r}, X_{\infty}\right], \quad \partial_{t_{1}^{r}} X_{\infty}=0 .
\end{aligned}
$$

\# Rational Gaudin model

The quadratic Gaudin Hamiltonians are given as

\# Algebraic setup
We need to choose a suitable Lie algebra and a linear map from the Lie algebra to itself.

Let us fix these become the $Q=\left\{\rho_{1}, \ldots, \zeta_{N}, \infty\right\} \subset \mathbb{C} P^{\prime}$, sites of the model
a finite set of points in $\mathbb{C P}^{\prime}$ including the point at infinity, and an index set $S=\{1, \ldots, N, \infty\}$.

Denote by
IQ the algebra of δ-valued rational function in the formal variable λ with poles in Q. this is where the Lax matrix lives

Define the local parameters $\lambda_{r}=\lambda-\zeta_{r}, \quad \zeta_{r} \neq \infty$, and $\lambda_{\infty}=\frac{1}{\lambda}$.
\# Algebraic setup
Define the direct sum of Lie algebras

$$
\widetilde{\delta_{Q}}=\bigoplus_{r \in S} \delta_{r}
$$

the Lie algebra we will work with
where

$$
\tilde{\delta}_{r}=\delta \otimes \mathbb{C}\left(\left(\lambda_{r}\right)\right)
$$

is the algebra of formal Laurent series in variable λ_{r} with coefficients in δ, and $L_{i e}$ bracket

$$
\left[X \lambda_{r}^{i}, Y \lambda_{r}^{j}\right]=[X, Y] \lambda_{r}^{i+j}, \quad X, Y \in \delta .
$$

elements of $\tilde{\delta_{Q}}$ are tuples $\left(x_{1}\left(\lambda_{1}\right), \ldots, x_{N}\left(\lambda_{N}\right), x_{\infty}\left(\lambda_{\infty}\right)\right)$ with $x_{1}, \ldots, x_{N}, x_{\infty} \in \xi$
\# Algebraic setup
We can define a vector space decomposition of $\tilde{\delta}_{Q}$ into Lie subalgebras

$$
\widetilde{\delta}_{Q}=\widetilde{\delta}_{Q+} \oplus \tilde{\delta}_{Q-}
$$

we will denote by $P_{ \pm}$ the projectors determined by this decomposition
where

$$
\begin{array}{ll}
\widetilde{\delta}_{r+}=\delta \otimes \mathbb{C}\left[\left[\lambda_{r}\right]\right], r \neq \infty, & \begin{array}{l}
\text { algebra of formal } \\
\text { Taylor series in } \lambda_{r}
\end{array} \\
\widetilde{\delta}_{\infty_{+}}=\delta \otimes \lambda_{\infty} \mathbb{C}\left[\left[\lambda_{\infty}\right]\right], \longrightarrow \begin{array}{l}
\text { algebra of formal Taylor series } \\
\text { in } \lambda_{\infty} \text { without the constant term }
\end{array}
\end{array}
$$

and

$$
\widetilde{\delta}_{r-}=\delta \otimes \lambda_{r}^{-1} \mathbb{C}\left[\lambda_{r}^{-1}\right], \quad r \neq \infty, \quad \begin{aligned}
& \text { algebra of polynomials in } \lambda_{r}^{-1} \\
& \text { without the constant term }
\end{aligned}
$$

$$
\widetilde{\delta}_{-}=\delta \otimes \mathbb{C}\left[\lambda_{\infty}^{-1}\right] . \longrightarrow \text { algebra of polynomials in } \lambda_{\infty}^{-1}
$$

\# Algebraic setup
Further, we have an embedding of $L_{i e}$ algebras

$$
c_{\lambda}: \mathcal{F}_{Q}(\xi) \longleftrightarrow \tilde{\delta}_{Q}, \quad f \longmapsto\left(c_{\lambda}, f, \ldots, c_{\lambda_{N}} f, c_{\lambda_{\infty}} f\right),
$$ maps $f \in \mathcal{F}_{0}(\xi)$ to the

which induces the vector space decomposition tuple of its laurent expansion at points

$$
\tilde{\delta}_{Q}=\widetilde{\delta}_{Q+} \oplus c_{\lambda} \mathcal{F}_{Q}(\xi)
$$

$$
\zeta_{1}, \ldots, \varphi_{N}, \rho_{\infty}
$$

We will denote by $\Pi_{ \pm}$the projectors corresponding to this decomposition.
same as $P_{ \pm}$
The r-matrix we need is

$$
R=\pi_{+}-\pi_{-} .
$$

\# Algebraic setup
To identify the dual space to $c_{\lambda} \mathcal{F}_{Q}(\xi)$, we will use the nondegenerate invariant symmetric bilinear form on $\&$,

$$
(X, Y) \longmapsto \operatorname{Tr}(X Y)
$$

to define a nondegenerate invariant symmetric bilinear form on $\widetilde{\delta_{Q}}$:

$$
\langle X, Y\rangle=\sum_{r \in S} \operatorname{Res}_{\lambda_{r}=0} \operatorname{Tr}\left(X_{r}\left(\lambda_{r}\right) Y_{r}\left(\lambda_{r}\right)\right)
$$

which induces the decomposition

$$
\widetilde{\delta}_{Q^{*}}^{*}=\widetilde{\delta}_{Q_{-}}^{*} \oplus \widetilde{\delta}_{Q_{+}}^{*} \simeq \widetilde{\delta}_{Q_{+}}^{\perp} \oplus{\widetilde{\delta} Q_{-}}_{\perp} .
$$

\# Algebraic setup
Both $\widetilde{\delta}_{Q+}$ and $c_{d} \mathcal{F}_{Q}(\xi)$ are (maximally) isotropic to this bilinear form, which allows us to make the identification elements of this are those we need to work with . $\tilde{\delta}_{Q+}^{*} \simeq c_{\lambda} y_{Q}(\xi)$.

So, coadjoint orbits of \tilde{G}_{Q+} in $\tilde{\delta}_{Q_{+}}^{*}$ will be the phase space where the Lax matrix of the model lives and where we will describe its dynamics.
elements of \widetilde{G}_{Q+} are of the form

$$
\begin{aligned}
& \varphi_{+}=\left(\varphi_{1+}\left(\lambda_{1}\right), \ldots, \varphi_{N+}\left(\lambda_{N}\right), \varphi_{\infty+}\left(\lambda_{\infty}\right)\right) \\
& \text { with } \varphi_{r+}\left(\lambda_{r}\right)=\sum_{n=0}^{\infty} \phi_{r}^{(n)} \lambda_{r}{ }^{n} \\
& \text { and } \varphi_{\infty+}\left(\lambda_{r}\right)=1+\sum_{n=1}^{\infty} \phi_{\infty}^{(n)} \lambda_{\infty}^{n}
\end{aligned}
$$

\# Algebraic setup
The coadjoint orbit of an element $c_{\lambda} f \in \tilde{\delta}_{Q+}^{*}$ is given by

$$
\begin{aligned}
c_{\lambda} F & =A d_{\varphi}^{R *} \cdot c_{\lambda} f \\
& =R_{+}^{*}\left(A d_{\varphi+}^{*} \cdot c_{\lambda} f\right) \\
& =R_{+}^{*}\left(\varphi_{+} \cdot c_{\lambda} f \cdot \varphi_{+}^{-1}\right) \\
& =\Pi-\left(\varphi_{+} \cdot c_{\lambda} f \cdot \varphi_{+}^{-1}\right)
\end{aligned}
$$

since we are 100 king at an element from a subspace of the dual only one corresponding subgroup plays a role in the coadjoint orbit

So, we are now ready with our setup!
\# Lax matrix

Choose

$$
\Lambda(\lambda)=\sum_{r=1}^{N} \frac{\Lambda_{r}}{\lambda-\rho_{r}}+\Omega, \quad \Lambda_{r g} \Omega \in \delta
$$

and consider its embedding into $\tilde{\delta_{a}}$

$$
c_{\lambda} \Lambda(\lambda)=c_{\lambda}\left(\sum_{r=1}^{N} \frac{\Lambda_{r}}{\lambda-\rho_{r}}+\Omega\right) \in c_{\lambda} \mathcal{F}_{Q}(\xi) \simeq \tilde{\delta}_{Q+}^{*} .
$$

The or bit of $c_{\lambda} \Lambda$ under the coadjoint action of \widetilde{G}_{Q+} will be

$$
\begin{aligned}
c_{\lambda} L & =\Pi_{-}\left(\varphi_{+} \cdot L_{\lambda} \Lambda \cdot \varphi_{+}^{-1}\right) \quad \begin{array}{l}
\text { contains the } \\
\text { dynamical degrees } \\
\text { of freedom }
\end{array} \\
A_{r}=\phi_{r}^{(0)} \Lambda_{r} \phi_{T}^{(0)-1} & =c_{\lambda}\left(\sum_{r=1}^{N} \frac{A_{r}}{\lambda-\rho_{r}}+\Omega\right) . \quad \begin{array}{l}
\text { fixed non-dynamical } \\
\text { element }
\end{array}
\end{aligned}
$$

\# Lagrangian multiform for the rational Gaudin model [Caudvelier - Dell'Atti - Singh '23]

We can now write down the Gaudin multiform on the orbit of $\Lambda(\lambda)$, with the elements $L_{\lambda} L$,

$$
\mathcal{L}=\sum_{k=1}^{N} \sum_{r \in S} \mathcal{L}_{k, r} d t_{k}^{r},
$$

with
restriction of

$$
\mathcal{L}_{k, r}=\sum_{s \in s} \operatorname{Res}_{\lambda_{s}=0} \operatorname{Tr}\left(c_{\lambda_{s}} L \partial_{t_{k}^{r}} \varphi_{s+}\left(\lambda_{s}\right) \varphi_{s+}\left(\lambda_{s}\right)^{-1}\right)-H_{k, r}\left(c_{\lambda} L\right) .
$$

Upon simplification, the Lagrangian coefficients take the form

$$
\mathcal{L}_{k, r}=\sum_{s=1}^{N} \operatorname{Tr}\left(\Lambda_{s} \phi_{s}^{-1} \partial_{t_{k}^{r}} \phi_{s}\right)-H_{k, r}\left(c_{r} L\right)
$$

$\longrightarrow \phi_{s}^{(0)}=\phi_{s}$ for notational simplicity
\# Lagrangian multiform for the rational Gaudin model [Caudrelier - Dell'Atti - Singh '23]

The potential part $H_{k, r}\left(c_{\lambda} L\right)$ is the restriction to $c_{\lambda} L$ of invariant functions on $\widetilde{\delta}_{Q}$ that can be given by

$$
H_{k, r}: x \in \tilde{\delta_{Q}} \longmapsto \operatorname{Res}_{\lambda_{r}=0} \frac{\operatorname{Tr}\left(x_{r}\left(\lambda_{r}\right)^{k+1}\right)}{k+1}, k \geqslant 1 .
$$

For $k=1,2$, we have

$$
H_{1, r}\left(c_{r} L\right)=\sum_{s \neq r} \frac{\operatorname{Tr}\left(A_{r} A_{s}\right)}{\rho_{r}-\rho_{s}}+\operatorname{Tr}\left(A_{r} \Omega\right)
$$

and

$$
H_{2, r}\left(c_{\lambda} L\right)=\operatorname{Tr}\left(A_{r}\left(\sum_{s \neq r} \frac{A_{s}}{\rho_{r}-\rho_{s}}+\Omega\right)^{2}\right)-\operatorname{Tr}\left(A_{r}^{2}\left(\sum_{s \neq r} \frac{A_{s}}{\left(\rho_{r}-\rho_{s}\right)^{2}}\right)\right)
$$

\# Euler-Lagrange equations
Varying $\mathcal{L}_{1, r}$ and $\mathcal{L}_{2, r}$ with respect to $\phi_{S}, s=1, \ldots, N$, gives the Euler-Lagrange equations for the first and the second time flows respectively:

$$
\begin{gathered}
\partial_{t_{1}^{r}} A_{s}=\frac{\left[A_{r}, A_{s}\right]}{\rho_{r}-\rho_{s}}, s \neq r, \\
\partial_{t_{1}^{r}} A_{r}=-\sum_{s \neq r} \frac{\left[A_{r}, A_{s}\right]}{\rho_{r}-\rho_{s}}-\left[A_{r}, \Omega\right], \\
\partial_{t_{2}^{r}} A_{s}=\frac{-\left[A_{r}^{2}, A_{s}\right]}{\left(\rho_{r}-\rho_{s}\right)^{2}}+\sum_{s^{\prime} \neq r} \frac{\left[A_{r} A_{s^{\prime}}+A_{s^{\prime}} A_{r}, A_{s}\right]}{\left(\rho_{r}-\rho_{s}\right)\left(\rho_{r}-\rho_{s}^{\prime}\right)}+\frac{\left[A_{r} \Omega+\Omega A_{r}, A_{s}\right], s \neq r,}{\rho_{r}-\rho_{s}}, \\
\partial_{t_{2}^{r}} A_{r}=\sum_{s \neq r} \frac{\left[A_{r}^{2}, A_{s}\right]}{\left(\rho_{r}-\rho_{s}\right)^{2}}-\sum_{s \neq r} \sum_{s^{\prime} \neq r} \frac{\left[A_{r}, A_{s} A_{s^{\prime}}\right]}{\left(\rho_{r}-\rho_{s}\right)\left(\rho_{r}-\rho_{s}^{\prime}\right)}-\sum_{s \neq r} \frac{\left[A_{v}, A_{s} \Omega+\Omega A_{s}\right]}{\rho_{r}-\rho_{s}}-\left[A_{r,}, \Omega^{2}\right] .
\end{gathered}
$$

V Ongoing work and future directions
\# Ongoing work and future directions
I Lagrangian multiform for cyclotomic Gaudin models [work in progress with U. Caudrelier and B. Vicedo]

Decomposition of a suitable Lie algebra into subalgebras that are not isotropic with respect to the chosen bilinear form - gives a non-skew-symmetric r-matrix
using the full power of the Lie dialgebra framework

Realisation of cyclotomic Gaudin models as some interesting finite-dimensional integrable models
\# Ongoing work and future directions
II Lagrangian multiform for affine Gaudin models

path integral quantisation
of integrable field theories
III Connections to geometric actions
IV Connections of the Lie dialgebra construction with the gauge-theoretic approach to integrability, in particular, mixed BF theory-based construction of Gaudin models

A not-at-all exhaustive list of references

I S. Lobb, F.W. Nijhoff, Lagrangian multiform and multidimensional consistency, 2009
II M.A. Semenov-Tian-Shansky, Integrable systems: the r-matrix approach, 2008
III V. Caudvelier, M. Stoppato, B. Vicedo, Classical Yang-Baxter equation, Lagrangian multiforms and ultralocal integrable hierarchies, 2022
IV S. Lacroix, Integrable models with twist function and affine Gaudin models, PhD thesis, 2018
V V.Caudrelier, M. Dell'Atti, A.A. Singh, Lagrangian multiforms on coadjoint orbits for finite-dimensional integrable systems, 2023

Thank you!

